Código

Estructuras VIVIENTES similares al LEGO que pueden programarse para crecer en cualquier forma de destino deseada

¿Qué pasaría si pudiéramos diseñar estructuras vivientes similares a LEGO que pueden autorreplicarse y moverse, y pueden programarse para crecer y autoensamblarse en cualquier forma de destino deseada?

Un equipo de investigación interdisciplinario, dirigido por el profesor del MIT Jörn Dunkel e Ingmar Riedel-Kruse de la Universidad de Arizona, ha desarrollado una plataforma de teoría experimental que se acerca un paso más a este objetivo. Utilizando bacterias modificadas genéticamente y modelos matemáticos, pudieron programar sistemas bacterianos para que crecieran en estructuras objetivo bidimensionales arbitrarias.

El laboratorio de Riedel-Kruse creó una caja de herramientas de bioingeniería que les permite controlar las propiedades de adhesión de célula a célula de las células bacterianas móviles. Las bacterias genéticamente modificadas desarrollan ciertas moléculas en sus paredes celulares que actúan como estaciones de acoplamiento para células asociadas adecuadas. Solo las células que tienen moléculas coincidentes pueden adherirse entre sí, mientras que las que tienen moléculas que no coinciden se deslizan entre sí. Después de sembrar una pequeña cantidad de bacterias en diferentes posiciones en una superficie de nutrientes 2D, las células crecerán, se dividirán y se moverán. Cuando dos poblaciones de células con moléculas de adhesión coincidentes chocan, forman una interfaz sólida visible cuya posición y forma están determinadas por las posiciones iniciales de siembra y las concentraciones de células.

Usando su versátil caja de herramientas de bioingeniería, los investigadores querían crear patrones de objetivos complejos. Para lograr este objetivo, el equipo necesitaba comprender: ¿Cuántos tipos de células diferentes se requieren para realizar patrones de interfaz arbitrarios? ¿Cómo habría que diseñar las reglas de interacción mutua? ¿Cuáles son las condiciones de siembra correctas para realizar las estructuras 2D deseadas?

Para responder a estas preguntas, Dunkel y su estudiante de doctorado Dominic Skinner, ahora becario postdoctoral NSF-Simons en la Universidad Northwestern, buscaron formular un modelo matemático que les permitiera simular el crecimiento y la dinámica de los enjambres bacterianos, y predecir la formación de los patrones de interfaz.

“Hacer experimentos de prueba y error es muy costoso y lleva mucho tiempo”, dice Dunkel. “Entonces, Dominic desarrolló e implementó un modelo que podía predecir el resultado esperado en un par de minutos”.

Skinner compara las bacterias programadas con los LEGO vivos. “El laboratorio de Ingmar está creando los componentes básicos biológicos y nosotros estamos generando el manual con nuestros modelos”, dice. “Su laboratorio coloca a las bacterias en los lugares correctos: pululan, se dividen y construyen colectivamente la forma objetivo deseada”.

Dunkel agrega: “Estos sistemas experimentales únicos hacen posible explorar una serie de preguntas biológicas fundamentales: ¿Cuántos tipos de células se necesitan para desarrollar ciertos patrones? ¿Cuánta información debe codificarse en el ADN para lograr un cierto nivel de complejidad estructural? ¿Qué controla las formas emergentes? La buena concordancia entre las predicciones del experimento y del modelo nos permite estudiar estas preguntas usando simulaciones por computadora a un costo muy bajo”.

Más allá de esto, la investigación sugiere varias aplicaciones prácticas directas en el diseño de biomateriales.

Su artículo de investigación «La lógica de adhesión de 4 bits permite el patrón de interfaz multicelular universal» aparece en la portada de Nature .

“En nuestro artículo, proporcionamos realizaciones de prueba de concepto de láminas elásticas de crecimiento propio y estructuras de canales que pueden transportar gotas de líquido a los lugares deseados”, dice Dunkel. “Otra aplicación son los biosensores; básicamente, las bacterias escriben un mensaje legible por humanos cuando detectan una molécula en su entorno”.

Como próximo paso, el equipo planea hacer crecer estructuras tridimensionales y agregar funcionalidades adicionales a las bacterias, como la capacidad de producir ciertos químicos en los lugares deseados.

El primer autor de este trabajo es Honesty Kim; otros coautores son David Glass, Alexander Hamby y Bradey Stuart. Todos están o estuvieron con el laboratorio Riedel-Kruse.

4 respuestas

  1. Do you mind if I quote a couple of your articles as long asI provide credit and sources back to your website?My blog site is in the very same niche as yours and my users would certainly benefit from some of the information you present here.Please let me know if this okay with you. Thanks!

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Más artículos:

¿Quién fue Jacobo Grinberg?

Jacobo Grinberg fue un reconocido neurocientífico mexicano que se dedicó a investigar temas como la percepción, la memoria y la conciencia. Nacido en la Ciudad de México en 1946, Grinberg estudió psicología en la Universidad Nacional Autónoma de México (UNAM) y realizó su doctorado en psicobiología en la Universidad de California en Irvine.

Leer más

Científicos crean sinapsis artificial que puede funcionar un millón de veces más rápido que las del cerebro humano

En particular, la sinapsis artificial está destinada a usarse en el aprendizaje profundo analógico, un enfoque para el progreso de la IA que mejora las velocidades y reduce el uso de energía, lo cual es importante para la asequibilidad, así como para las demandas de los recursos naturales del planeta. La clave de las mejoras significativas en esta última resistencia es el uso de un material inorgánico especialmente seleccionado y eficiente. El equipo detrás del proyecto dice que las ganancias en las velocidades de aprendizaje de la red neuronal de IA prometen ser importantes.

Leer más

La Mosca | Relato Jacobo Grinberg

Una mosca azulada volaba en el cuarto. Se acercaba a la ventana y creyéndola sin vidrio chocaba contra él. Miles de veces chocó y después de cada uno de ellos cayó «inconsciente» al suelo. Poco a poco se dio cuenta de que había algo muy misterioso que le impedía alcanzar el exterior. La mosca azulada empezó a buscar un agujero en el cuarto.

Leer más

Los Diferentes Niveles De Consciencia Explicados Por Jacobo Grinberg

El conocimiento se da únicamente cuando el receptor del mismo está preparado para recibirlo. Esta preparación no es otra cosa sino el cierre de un patrón, el que, al completarse, deja espacios neurosintérgicos libres capaces de recibir y manejar información y experiencias novedosas. Si un patrón no se ha completado y, a pesar de ello, se fuerza la entrada de un nuevo conocimiento, el sistema entra en crisis, la que no es otra cosa más que una saturación debida a un «salto». Por ello, la vida debe ser cursada con paciencia y recorrerse completamente en cada uno de sus niveles.

Leer más

EXCALIBUR: El libro que vuelve loco

Lafayette Ron Hubbard, descubridor de: la dianética y la cientología. Redactó para información de algunos amigos íntimos, recuerdos de sus vidas anteriores. Estos recuerdos proceden, según él, de una gran civilización galáctica, de la que no somos más que una colonia perdida. Reunió sus recuerdos en un libro titulado Excalibur, que dio a leer a algunos voluntarios. Éstos se volvieron locos: La dianética, el psicoanálisis, la cientología, e incluso los medicamentos conocidos, son incapaces de remediar a aquellos hombres.

Leer más

Un Implante Revolucionario del MIT Podría Salvar Vidas de Diabéticos en Situaciones Críticas

Un equipo de ingenieros del Instituto Tecnológico de Massachusetts (MIT) ha desarrollado un implante revolucionario que podría cambiar para siempre el manejo de emergencias en personas con diabetes tipo 1. Este pequeño dispositivo, del tamaño de una moneda, almacena glucagón en polvo y puede activarse de manera remota para prevenir episodios de hipoglucemia severa –incluso mientras el paciente duerme.

Leer más

Mindfulness: La ciencia de estar presente y el poder de cambiar tu vida

Vivimos en una época donde la mente va más rápido que la vida. Pensamos en el pasado, nos preocupamos por el futuro, y olvidamos lo más importante: el aquí y ahora. El Mindfulness, o atención plena, es más que una moda: es una herramienta poderosa, respaldada por la ciencia, capaz de transformar tu salud mental, emocional y física desde la raíz.

Leer más

Descubre en segundos si un libro vale tu tiempo.

Resúmenes precisos, aplicables y al grano. Sin bla bla. Solo conocimiento útil.

¿Cómo funciona?

1. Escribe el título

Introduce el título de cualquier libro.

2. Obtén el resumen

Deja que nuestra IA genere el resumen rápidamente.

3. Decide si leerlo

Con el resumen, decide si vale la pena seguir leyendo.

Lo que dicen nuestros usuarios

"¡Este servicio es genial! Pude decidir rápidamente si quería leer un libro entero. Los resúmenes son claros y concisos." - José, Emprendedor.

"Antes de invertir en un libro, siempre consulto la página para saber si realmente me interesa. ¡Totalmente recomendable!" - Laura, Profesora.

¿Listo para probarlo?